Skip to main content

Emerging Technologies in Neuroengineering to Advance Rehabilitation, Improve Quality of Care Delivery, and Encourage Independent Living

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Clinical and engineering advancements from rehabilitation sciences, medicine, psychology, and bioengineering are becoming more appealing, as they provide those with neurological disabilities, and the people that care for them, the confidence and assistance to live independently (Kirby et al., Arch Phys Med Rehabil 99: 1295–1302, 2018; Dicianno et al., Mil Med 183: e518–e525, 2018). The purpose of this chapter is to provide an overview and examples of emerging clinical technologies assisting people with disabilities as they increasingly become independent, participating members of society. In completing the chapter, the reader should understand (1) technology design and research; (2) clinical applications for neuroengineering; and (3) translation for activities of daily living. Examples discussed will include neurostimulation as well as assisted robots, adaptable aids, mobile health (mhealth), internet of things, and telehealth. The reader will then be provided with a discussion recapping each section while providing additional detail on their long-term benefits and potential future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADLs:

Activities of Daily Living

ALS:

Amyotrophic Lateral Sclerosis

CVA:

Cerebrovascular Accident

CAREN:

Computer-Assisted Rehabilitation Environment

EPWs:

Electric Powered Wheelchairs

ES:

Electric Stimulation

FES:

Functional Electrical Stimulation

HERL:

Human Engineering Research Laboratories

IoT:

Internet of Things

MW-VC:

Manual Wheelchair Virtual Coach

mHealth:

Mobile Health

mTBI:

Mild Traumatic Brain Injury

MEBot:

Mobility Enhancement Robot

MS:

Multiple Sclerosis

NMES:

Neuromuscular Electrical Stimulation

PTS:

Patient Transfer System

PerMMA:

Personal Mobility and Manipulation Appliance

PTSD:

Post-Traumatic Stress Disorder

RATD:

Robotic-Assisted Transfer Device

SCI/D:

Spinal Cord Injury and Disease

TENS:

Transcutaneous Electronic Nerve Stimulation

TBI:

Traumatic Brain Injury

VR:

Virtual Reality

References

  1. Kirby, R.L., et al.: Extent to which caregivers enhance the wheelchair skills capacity and confidence of power wheelchair users: a cross-sectional study. Arch. Phys. Med. Rehabil. 99(7), 1295–1302 (2018)

    Article  Google Scholar 

  2. Dicianno, B.E., et al.: The voice of the consumer: a survey of veterans and other users of assistive technology. Mil. Med. 183(11–12), e518–e525 (2018)

    Article  Google Scholar 

  3. Brault, W. Americans with Disabilities: 2010 Household Economic Studies Current Population Reports. (2012)

    Google Scholar 

  4. Organization WH. Global Cooperation on Assistive Technology (GATE). (2017)

    Google Scholar 

  5. Darragh, A.R., et al.: Musculoskeletal discomfort, physical demand, and caregiving activities in informal caregivers. J. Appl. Gerontol. 34(6), 734–760 (2015)

    Article  Google Scholar 

  6. Marciniak, M.D., et al.: The cost of treating anxiety: the medical and demographic correlates that impact total medical costs. Depress. Anxiety. 21(4), 178–184 (2005)

    Article  Google Scholar 

  7. Reisman, M.: PTSD treatment for veterans: what’s working, what’s new, and what’s next. Pharm. Ther. 41(10), 623 (2016)

    Google Scholar 

  8. Mittal, D., et al.: Stigma associated with PTSD: perceptions of treatment seeking combat veterans. Psychiatr. Rehabil. J. 36(2), 86 (2013)

    Article  Google Scholar 

  9. Grindle, G.G., et al.: Design and user evaluation of a wheelchair mounted robotic assisted transfer device. BioMed Res. Int. 2015, 1 (2015)

    Article  Google Scholar 

  10. Hubbard, S.L., et al.: Demographic characteristics of veterans who received wheelchairs and scooters from Veterans Health Administration. J. Rehabil. Res. Dev. 43(7), 813 (2006)

    Article  Google Scholar 

  11. Board, US Access: Americans with Disabilities Act and Architectural Barriers Act Accessibility Guidelines for Buildings and Facilities. US Access Board. Retrieved February 17, 2010, Washington, DC (2004)

    Google Scholar 

  12. Welage, N., Liu, K.P.Y.: Wheelchair accessibility of public buildings: a review of the literature. Disabil. Rehabil. Assist. Technol. 6(1), 1–9 (2011)

    Article  Google Scholar 

  13. Ummat, S., Lee Kirby, R.: Nonfatal wheelchair-related accidents reported to the National Electronic Injury Surveillance System. Am. J. Phys. Med. Rehabil. 73(3), 163–167 (1994)

    Article  Google Scholar 

  14. Reed, R.L., Yochum, K., Schloss, M.: Platform motorized wheelchairs in congregate care centers: a survey of usage and safety. Arch. Phys. Med. Rehabil. 74(1), 101–103 (1993)

    Google Scholar 

  15. Kirby, R.L., Ackroyd-Stolarz, S.A.: Wheelchair safety–adverse reports to the United States Food and Drug Administration. Am. J. Phys. Med. Rehabil. 74(4), 308–312 (1995)

    Article  Google Scholar 

  16. Valenti, F.: Neuromuscular electrostimulation in clinical practice. Acta Anaesthesiol. 15, 227–245 (1964)

    Google Scholar 

  17. Yu, W.W., et al.: Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects. Proc. Inst. Mech. Eng. H J. Eng. Med. 223(6), 653–662 (2009)

    Article  Google Scholar 

  18. Doucet, B.M., Lam, A., Griffin, L.: Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 85(2), 201 (2012)

    Google Scholar 

  19. Stein, C., et al.: Effects of electrical stimulation in spastic muscles after stroke: systematic review and meta-analysis of randomized controlled trials. Stroke. 46(8), 2197–2205 (2015)

    Article  Google Scholar 

  20. Bélanger, M., et al.: Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch. Phys. Med. Rehabil. 81(8), 1090–1098 (2000)

    Article  Google Scholar 

  21. Vaz, M.A., et al.: Neuromuscular electrical stimulation (NMES) reduces structural and functional losses of quadriceps muscle and improves health status in patients with knee osteoarthritis. J. Orthop. Res. 31(4), 511–516 (2013)

    Article  Google Scholar 

  22. Monaghan, B., Caulfield, B., O’Mathúna, D.P.: Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement. Cochrane Database Syst. Rev. 1, CD007177 (2010)

    Google Scholar 

  23. Moore, S.R., Shurman, J.: Combined neuromuscular electrical stimulation and transcutaneous electrical nerve stimulation for treatment of chronic back pain: a double-blind, repeated measures comparison. Arch. Phys. Med. Rehabil. 78(1), 55–60 (1997)

    Article  Google Scholar 

  24. Greve, J.M.D., et al.: Functional electrical stimulation (FES): muscle histochemical analysis. Spinal Cord. 31(12), 764–770 (1993)

    Article  Google Scholar 

  25. Laufer, Y., Shtraker, H., Gabyzon, M.E.: The effects of exercise and neuromuscular electrical stimulation in subjects with knee osteoarthritis: a 3-month follow-up study. Clin. Interv. Aging. 9, 1153 (2014)

    Article  Google Scholar 

  26. Gaines, J.M., Jeffrey Metter, E., Talbot, L.A.: The effect of neuromuscular electrical stimulation on arthritis knee pain in older adults with osteoarthritis of the knee. Appl. Nurs. Res. 17(3), 201–206 (2004)

    Article  Google Scholar 

  27. Imoto, A.M., et al.: Is neuromuscular electrical stimulation effective for improving pain, function and activities of daily living of knee osteoarthritis patients? A randomized clinical trial. Sao Paulo Med. J. 131(2), 80–87 (2013)

    Article  Google Scholar 

  28. Demircioglu, D.T., et al.: The effect of neuromuscular electrical stimulation on functional status and quality of life after knee arthroplasty: a randomized controlled study. J. Phys. Ther. Sci. 27(8), 2501–2506 (2015)

    Article  Google Scholar 

  29. Kwakkel, G., Kollen, B., Lindeman, E.: Understanding the pattern of functional recovery after stroke: facts and theories. Restor. Neurol. Neurosci. 22(3–5), 281–299 (2004)

    Google Scholar 

  30. Mehrholz, J. "Platz T, J Kugler, and M Pohl. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke." Cochrane Database Syst. Rev. 4 (2008) CD006876

    Google Scholar 

  31. Lo, A.C., et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362(19), 1772–1783 (2010)

    Article  Google Scholar 

  32. Kwakkel, G., Kollen, B.J., Krebs, H.I.: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair. 22(2), 111–121 (2008)

    Article  Google Scholar 

  33. Volpe, B.T., et al.: A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology. 54(10), 1938–1944 (2000)

    Article  Google Scholar 

  34. Lum, P.S., et al.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)

    Article  Google Scholar 

  35. Wu, T.-M., Chen, D.-Z.: Design and preliminary evaluation of an exoskeleton for upper limb resistance training. Front. Mech. Eng. 7(2), 188–198 (2012)

    Article  Google Scholar 

  36. Looned, R., et al.: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J. Neuroeng. Rehabil. 11(1), 51 (2014)

    Article  Google Scholar 

  37. Vanderniepen, I., et al.: Orthopaedic rehabilitation: a powered elbow orthosis using compliant actuation. In: 2009 IEEE International Conference on Rehabilitation Robotics. IEEE (2009)

    Google Scholar 

  38. Jarrassé, N., et al.: Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Front. Hum. Neurosci. 8, 947 (2014)

    Google Scholar 

  39. Polygerinos, P., et al.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)

    Article  Google Scholar 

  40. Rahman, A., Al-Jumaily, A.: Design and development of a bilateral therapeutic hand device for stroke rehabilitation. Int. J. Adv. Robot. Syst. 10(12), 405 (2013)

    Article  Google Scholar 

  41. Miranda, A.B.W., et al.: Bioinspired mechanical design of an upper limb exoskeleton for rehabilitation and motor control assessment. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE (2012)

    Google Scholar 

  42. Prior, S.D., Warner, P.R.: Wheelchair-mounted robots for the home environment. In: Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’93), vol. 2. IEEE (1993)

    Google Scholar 

  43. Hammel, J., et al.: Clinical evaluation of a desktop robotic assistant. J. Rehabil. Res. Dev. 26(3), 1–16 (1989)

    Google Scholar 

  44. Driessen, B.J.F., Evers, H.G., Woerden, J.A.v.: MANUS – a wheelchair-mounted rehabilitation robot. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 215(3), 285–290 (2001)

    Article  Google Scholar 

  45. Driessen, B., Liefhebber, F., Ten Kate, T., Van Woerden, K.: Collaborative control of the MANUS manipulator. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, pp. 247–251. IEEE (2005)

    Chapter  Google Scholar 

  46. Chung, C.-S., Cooper, R.A.: Literature review of wheelchair-mounted robotic manipulation: user interface and end-user evaluation. In: RESNA Annual Conference (2012)

    Google Scholar 

  47. Maheu, V., et al.: Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities. In: 2011 IEEE International Conference on Rehabilitation Robotics. IEEE (2011)

    Google Scholar 

  48. Chung, C.-S., et al.: Task-oriented performance evaluation for assistive robotic manipulators: a pilot study. Am. J. Phys. Med. Rehabil. 96(6), 395–407 (2017)

    Article  Google Scholar 

  49. Chung, C.-S.: Development and Assessment of Advanced Assistive Robotic Manipulators User Interfaces. Diss. University of Pittsburgh (2015)

    Google Scholar 

  50. Bach, J.R., Zeelenberg, A.P., Winter, C.: Wheelchair-mounted robot manipulators. Long term use by patients with Duchenne muscular dystrophy. Am. J. Phys. Med. Rehabil. 69(2), 55–59 (1990)

    Article  Google Scholar 

  51. Cooper, R.A., et al.: Personal mobility and manipulation appliance – design, development, and initial testing. Proc. IEEE. 100(8), 2505–2511 (2012)

    Article  Google Scholar 

  52. Chung, C.-S., Wang, H., Cooper, R.A.: Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). IEEE (2013)

    Google Scholar 

  53. Chung, C.S., et al.: Adapted Wolf Motor Function Test for assistive robotic manipulators user interfaces: a pilot study. RESNA Annual Conference. (2014)

    Google Scholar 

  54. Chung, C.-S., Wang, H., Cooper, R.A.: Functional assessment and performance evaluation for assistive robotic manipulators: literature review. J. Spinal Cord Med. 36(4), 273–289 (2013)

    Article  Google Scholar 

  55. Cooper, R.A., et al.: A perspective on intelligent devices and environments in medical rehabilitation. Med. Eng. Phys. 30(10), 1387–1398 (2008)

    Article  Google Scholar 

  56. Wang, H., et al.: The Personal Mobility and Manipulation Appliance (PerMMA): a robotic wheelchair with advanced mobility and manipulation. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE (2012)

    Google Scholar 

  57. Wang, H., et al.: Performance evaluation of the personal mobility and manipulation appliance (PerMMA). Med. Eng. Phys. 35(11), 1613–1619 (2013)

    Article  Google Scholar 

  58. Daraiseh, N.M., et al.: Low back symptoms among hospital nurses, associations to individual factors and pain in multiple body regions. Int. J. Ind. Ergon. 40(1), 19–24 (2010)

    Article  Google Scholar 

  59. Santaguida, P.L., et al.: Comparison of cumulative low back loads of caregivers when transferring patients using overhead and floor mechanical lifting devices. Clin. Biomech. 20(9), 906–916 (2005)

    Article  Google Scholar 

  60. Ribeiro, S.B., Cárdia, M.C.G., Almeida, L.C.: Biomechanical and organizational risk and prevalence of low back pain in the old adults caregivers of a nursing home in Joao Pessoa/PB. Work. 41(Suppl 1), 1933–1939 (2012)

    Article  Google Scholar 

  61. Oranye, N.O., Bennett, J.: Prevalence of work-related musculoskeletal and non-musculoskeletal injuries in health care workers: the implications for work disability management. Ergonomics. 61(3), 355–366 (2018)

    Article  Google Scholar 

  62. Miller, A., et al.: Evaluation of the effectiveness of portable ceiling lifts in a new long-term care facility. Appl. Ergon. 37(3), 377–385 (2006)

    Article  Google Scholar 

  63. Sivaprakasam, A., et al.: Innovation in transfer assist technologies for persons with severe disabilities and their caregivers. IEEE Potentials. 36(1), 34–41 (2017)

    Article  Google Scholar 

  64. Dicianno, B.E., et al.: The future of the provision process for mobility assistive technology: a survey of providers. Disabil. Rehabil. Assist. Technol. 14(4), 338–345 (2019)

    Article  Google Scholar 

  65. Cooper, R.A., Grindle, G.G., McCartney, M.: US Patent No. 9,254,234. U.S. Patent and Trademark Office, Washington, DC (2016)

    Google Scholar 

  66. Burkman, J., et al.: Further development of a robotic-assisted transfer device. Top. Spinal Cord Inj. Rehabil. 23(2), 140–146 (2017)

    Article  Google Scholar 

  67. Greenhalgh, M., et al.: Assessment of usability and task load demand using a robot-assisted transfer device compared with a Hoyer advance for dependent wheelchair transfers. Am. J. Phys. Med. Rehabil. 98(8), 729–734 (2019)

    Article  Google Scholar 

  68. Jeannis, H., et al.: Initial development of direct interaction for a transfer robotic arm system for caregivers. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). IEEE (2013)

    Google Scholar 

  69. Wang, H., et al.: Development of an advanced mobile base for personal mobility and manipulation appliance generation II robotic wheelchair. J. Spinal Cord Med. 36(4), 333–346 (2013)

    Article  Google Scholar 

  70. Candiotti, J., et al.: Design and evaluation of a seat orientation controller during uneven terrain driving. Med. Eng. Phys. 38(3), 241–247 (2016)

    Article  Google Scholar 

  71. Candiotti, J., et al.: Kinematics and stability analysis of a novel power wheelchair when traversing architectural barriers. Top. Spinal Cord Inj. Rehabil. 23(2), 110–119 (2017)

    Article  Google Scholar 

  72. Daveler, B., et al.: Integration of pneumatic technology in powered mobility devices. Top. Spinal Cord Inj. Rehabil. 23(2), 120–130 (2017)

    Article  Google Scholar 

  73. Van der Eerden, W.J., et al.: CAREN-computer assisted rehabilitation environment. Stud. Health Technol. Inform. 62, 373–378 (1999)

    Google Scholar 

  74. den Bogert, V., Antonie, J., et al.: A real-time system for biomechanical analysis of human movement and muscle function. Med. Biol. Eng. Comput. 51(10), 1069–1077 (2013)

    Article  Google Scholar 

  75. Isaacson, B.M., Swanson, T.M., Pasquina, P.F.: The use of a computer-assisted rehabilitation environment (CAREN) for enhancing wounded warrior rehabilitation regimens. J. Spinal Cord Med. 36(4), 296–299 (2013)

    Article  Google Scholar 

  76. van der Meer, R.: Recent developments in computer assisted rehabilitation environments. Mil. Med. Res. 1(1), 22 (2014)

    Google Scholar 

  77. Poushter, J.: Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies, p. 22. Pew Research Center (2016)

    Google Scholar 

  78. Proudfoot, J., Parker, G., Pavlovic, D.H., Manicavasagar, V., Adler, E., Whitton, A.: Community attitudes to the appropriate of mobile phones for monitoring and managing depression, anxiety, and stress. J. Med. Internet Res. 12(5), e64p.1 (2010)

    Article  Google Scholar 

  79. Ng, E.M., et al.: Telerehabilitation for addressing executive dysfunction after traumatic brain injury. Brain Inj. 27(5), 548–564 (2013)

    Article  Google Scholar 

  80. Ly, K.H., Truschel, A., Jarl, L., Magnusson, S., Windahl, T., Johansson, R., Carlbring, P., Andersson, G.: Behavioral activation versus mindfulness-based guided self-help treatment administered through a smartphone application: a randomized controlled trial. BMJ Open. [Internet]. 4(1), e003440 (2014)

    Article  Google Scholar 

  81. Rizvi, S.L., et al.: A pilot study of the DBT coach: an interactive mobile phone application for individuals with borderline personality disorder and substance use disorder. Behav. Ther. 42(4), 589–600 (2011)

    Article  Google Scholar 

  82. Howells, A., Ivtzan, I., Eiroa-Orosa, F.J.: Putting the ‘app’ in happiness: a randomised controlled trial of a smartphone-based mindfulness intervention to enhance wellbeing. J. Happiness Stud. 17(1), 163–185 (2016)

    Article  Google Scholar 

  83. Kettlewell, J., Phillips, J., Radford, K., das Nair, R.: Informing evaluation of a smartphone application for people with acquired brain injury: a stakeholder engagement study. BMC Med. Inform. Decis. Mak. 18(1), 33 (2018)

    Article  Google Scholar 

  84. Moskowitz, D., Young, S.: Ecological momentary assessment: what it is and why it is a method of the future in clinical psychopharmacology. J. Psychiatry Neurosci. 31(1), 13–20 (2006)

    Google Scholar 

  85. Yurkiewicz, I., Lappan, C., Neely, E., Hesselbrock, R., Girard, P., Alphonso, A., Tsao, J.: Outcomes from a US Military neurology and traumatic brain injury telemedicine program. Neurology. 79, 1237–1243 (2010)

    Article  Google Scholar 

  86. Possemato, K., et al.: Using PTSD Coach in primary care with and without clinician support: a pilot randomized controlled trial. Gen. Hosp. Psychiatry. 38, 94–98 (2016)

    Article  Google Scholar 

  87. Yun, M., Yuxin, B.: Research on the architecture and key technology of Internet of Things (IoT) applied on smart grid. In: 2010 International Conference on Advances in Energy Engineering. IEEE (2010)

    Google Scholar 

  88. Domingo, M.C.: An overview of the Internet of Things for people with disabilities. J. Netw. Comput. Appl. 35(2), 584–596 (2012)

    Article  Google Scholar 

  89. Blanck, P.: eQuality: web accessibility by people with cognitive disabilities. Inclusion. 3(2), 75–91 (2015)

    Article  Google Scholar 

  90. Wang, J., et al.: Comparison of two prompting methods in guiding people with traumatic brain injury in cooking tasks. In: International Conference on Smart Homes and Health Telematics. Springer, Cham (2014)

    Google Scholar 

  91. Brennan, D.M., Georgeadis, A.C., Baron, C.R., Barker, L.M.: The effect of videoconference-based tele-rehabilitation on storyretelling performance by brain-injured subjects and its implications for remote speech-language therapy. Telemed. J. E Health. 10, 147–154 (2004)

    Article  Google Scholar 

  92. Cain, S., Cornfeld, R., Waibel, K., Jorgensen-Wagers, K., Keen, R., Brown, C., Hearn, H., Jack, A., Black, I., Ortize-Rosado, E.: Military medicine implements in-home virtual health in Europe. Army Med. Dep. J. Spec. Ed. (2–18), 59–64 (2018)

    Google Scholar 

  93. Anand Mhatre, M.I.M.S.E., Jonathan Duvall, M.S., Dan Ding, P.D., Rory Cooper, P.D., Jon Pearlman, P.D.: Design and focus group evaluation of a bed-integrated weight measurement system for wheelchair users. Assist. Technol. 28(4), 193–201 (2016). https://doi.org/10.1080/10400435.2016.1140690

    Article  Google Scholar 

  94. Duvall, J., Karg, P., Brienza, D., Pearlman, J.: Detection and classification methodology for movements in the bed that supports continuous pressure injury risk assessment and repositioning compliance. J. Tissue Viability. 28(4), 7–13 (2019)

    Article  Google Scholar 

  95. Girard, P.: Military and VA telemedicine systems for patients with traumatic brain injury. J. Rehabil. Res. Dev. 44(7), 1017–1026 (2007)

    Article  Google Scholar 

  96. Sayer, N.A., Rettmann, N.A., Carlson, K.F., et al.: Veterans with history of mild traumatic brain injury and posttraumatic stress disorder: challenges from provider perspective. J. Rehabil. Res. Dev. 46, 703–713 (2009)

    Article  Google Scholar 

  97. Bourgeois, M.S., et al.: The effects of cognitive tele-therapy on reported everyday memorybehaviours of persons with chronic traumatic brain injury. Brain Inj. 21, 1245–1257 (2007)

    Article  Google Scholar 

  98. Bell, K.R., Hoffman, J.M., Temkin, N.R., et al.: The effect of telephone counselling on reducing post traumatic symptoms after mild traumatic brain injury: a randomised trial. J. Neurol. Neurosurg. Psychiatry. 79, 1275–1281 (2008)

    Article  Google Scholar 

  99. Schwab, K.A., Ivins, B., Cramer, G., et al.: Screening for traumatic brain injury in troops returning from deployment in Afghanistan and Iraq: initial investigation of the usefulness of a short screening tool for traumatic brain injury. J. Head Trauma Rehabil. 22, 377–389 (2007)

    Article  Google Scholar 

  100. Vanderploeg, R.D., Curtiss, G., Luis, C.A., Salazar, A.M.: Long-term morbidities following self-reported mild traumatic brain injury. J. Clin. Exp. Neuropsychol. 29, 585–598 (2007)

    Article  Google Scholar 

  101. Tommerdahl, M., Dennis, R., Francisco, E., Holden, J., Nguyen, R., Favorov, O.: Neurosensory assessments of concussion. Mil. Med. 181(5), 45–50 (2016)

    Article  Google Scholar 

  102. Wu, Y.-K., et al.: Evaluating the usability of a smartphone virtual seating coach application for powered wheelchair users. Med. Eng. Phys. 38(6), 569–575 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Greenhalgh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Greenhalgh, M. et al. (2022). Emerging Technologies in Neuroengineering to Advance Rehabilitation, Improve Quality of Care Delivery, and Encourage Independent Living. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics